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PROPAGATION OF ELECTROMAGNETIC WAVES FOR ARBITRARY DEPENDENCE OF 

MAGNETIC PERMEABILITY ON MAGNETIC INDUCTION* 

G. L. SEDOVA 

The paper deals with simple plane-polarized waves in magnetic media. It is assumed 

that the magnetic permeability of the medium is a given function of the modulus of 

its magnetic induction /l/. The qualitative form of this dependence makes it 

possible to determine the magnitude of magnetic field intensity under which the 

wave becomes inverted. The discontinuities in such media are studied and conditions 

under which they become evolutionary are found. A plane self-similar boundaryvalue 

problem is solved. Similar waves and discontinuities in the electromagnetic field 

parameters in magnetic media with magnetic permeability linearly and inversely pro- 

portional to the modulus of magnetic field intensity, have been investigated in /2/. 

1. Simple waves. Let us consider the propagation of an electromagnetic wave through 
an infinite magnetic medium which magnetizes under the action of an external magnetic field 
of strength H, according to the law B = p(fI).H, in the case when the magnetic permeabil- 

ity p is a function of the modulus of magnetic field intensity. The permittivity e of the 

medium is assumed constant and equal to unity. 
The propagation of plane electromagnetic waves in a magnetic medium is described by the 

Maxwell equations(itis assumedthatall quantities depend only on time t and the coordinate x 

along which the wave propagates) 

From the last two equations of the system (1.1) follows B, = B,,, B, =B,,- If a dependence 

p 7 y(H) exists, then the equation B = pH yields the relation H = II(B). 

Two types ofelectromagneticwaves can be obtained from the system (1.1): 1) transverse 

waves propagating with velocity aA=cl/H/B (such waves were studied in detail in /2/); 

2) plane-polarized waves in which the magnetic permeability of the medium varies. In what 

follows, we shall only consider the plane-polarized waves. 

We choose the coordinate system so that HzsO. If follows that B, G 0 and in this 

case we have E,, m; const. Let Fig.1 be a qualitative representation of the dependence of H 
on B. We shall assume that dH/dB>O everywhere and that only asingleinflectionpointB, 

exists at which dZHldB2 = 0. 

B >B,. 

Moreover d2H / dBz ( 0 when 0 < B < B, and d2H I dB2 > 0 when 

We denote by B,, the value of B for which the relation dp-’ I dB ~-= Ii’ I B - H / BZ = 0 
holds. Such a dependence of H on B is characteristic for the process of magnetizing a com- 

pletely demagnetized medium /l/. 

Fig.1 Fig.2 

When B,=B,, and B, = 0, the dependence of Hv on B, can 

We have 
H, = H, (B,) = H (B) B, I B, B = 1/B,% + B,,L 

dH, I dB, = F (B,) = (dH / dB) B,= / BZ + HBzo2 I B3 > 

be written in the form 

0 

From the system (1.1) we can obtain the value of the rate of propagation a of a longitudinal 

electromagnetic wave representing the charactersitic velocity of the system 

F !!&+!&-j, aEz 1 dB v -0 as---z-- (1.2) 
c 
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The characteristic velocity is given, in accordance with (1.21, by the formula a=* c)/‘i;;, 
and the equality a = aA holds at the point B = B, since at this point dp-r/dB = 0 and 
hence dHl dB = HIB. The system (1.2) can be used to obtain the relation connecting the 
electric and magnetic fields in a simple longitudinal wave 

The inversion of simple waves is governed by the sign of the derivative dFldB, 

sin 0 = B, / B, cos f3 = B,, / B (1.3) 

We assume that the magnetization curve (Fig.11 is such, that dlH/dBa and dy-'l dB 
change their sign once when B> 0, i.e. dzH 1 dB” (a=~, = 0, dp-’ / dB Ia=s, = 0 , retain the neg- 
ative sign when B<B, and R( B, respectively, and the positive sign when B>B, and 

B>B,. 
[B$J. 

Therefore from (1.3) it follows that the function dF/&?, vanishes on the segment 

Let us find the conditions under which the form of the curve By(Hy) willcoincidequalit- 
atively with the curve under which 
lB$$l. 

B(H), i.e. dF/dB, = 0 only at one point of the segment 
We shall denote this point by B&. The condition that (FF/dBu2>0 at the point 

at which dF/dB,=O, represents the sufficiency. We have 

H”sin2fl + 4% + coSpB$) (1.4) 

In the case when the function H"is monotonous, i.e., H->0, the right hand part of (1.4) 
is always positive. If H"'changes its sign, then we must demand that the expression within 
the brackets in (1.4) be positive on the segment lB$,I. In this case the relation H,(B,) has 
the same qualitative form as the curve H (B) (see Fig.11 . 
B, 

Let us denote by B," the value of 
for which +-' I dB, = 0. We have 

dp-’ dHIB 1 dH dB H dB 

dB, = dBy =~‘q--Kq 

Consequently, if dk-lldB = 0 at the point B == B,,, then dp-'ldB, = 0 at the same point 
B, and we obviously have BY = B, sin 8. Thus when B,<ByO(By>BUo), the waves which in- 
vert are those in which the magnetic field behind the wave decreases (increases). 

2. Shock waves. Conditions at the strong discontinuities in the values of the 
electromagnetic field following from the Maxwell equations, have the following form in the 
case when surface currents and charges are absent from the discontinuities /3/: 

IBJ = 0, IE, 1 = 0, IH,l = c-l(v x E), IE,] =: c-l (B x v) (2.1) 
The X- axis is chosen normal to the discontinuity, and v = un is the normal component of the 
velocity of propagation of the discontinuity through the magnetic medium. Square brackets 
denote the differences in the values of the quantities behind (denoted below by the index 2) 
and in front (denoted by index 1) of the discontinuity_ System (2.1) yields a plane-polarized 
discontinuity moving with velocity u = cl/[H,] / IB,] in which the components of the electro- 
magnetic field HV, B, and Ez vary, and a transverse Alfven discontinuity moving with velocity 
VA = cl/N/B in which rotation of the vectors H,B and E takes place without affecting 
their moduli. Such a discontinuity is discussed in /2/. In what follows, we shall limit our- 
selves to such plane discontinuities. The square of the propagation velocity of such a dis- 
continuity is proportional to the tangent of the angle of inclination of the secant connecting, 
on the curve HV = H,(B,), the points corresponding to the states in front of, and behind the 
discontinuity. 

The rate of propagation of the simple waves a = cjfdH, I dB, is shown graphically by the 
angle of inclination of the tangent at the point B,, H,, to the curve H, = Hy(By). Therefore 
the condition of evolutionarity with respect to the plane-polarized perturbations can be ful- 
filled, if the secant corresponding to the velocity of the shock wave lies on one side of this 
curve, otherwise the rate of propagation of the discontinuity will be less than the velocity 
of propagation of the plane-polarized perturbations in front of, as well as behind the dis- 
continuity. 

For a secant lying above (below) the curve H, = H, (B,) , the shock waves with B,,>B,, 
(withBVZ TB,,) are evolutionary. 

When B,, < B," t all discontinuities with 0 <B,,< B,, and B,,>B,l* are evolutionary. 
The point B,,* (Fig.2) is found from the Jouguet condition 

v (&*) = a (B,,) (2.2) 
when BVo < B,, < B,“, all discontinuities with Buz>Byl and By2<Byl* are evolutionary. The 
Jouguet condition (2.2) holds at the discontinuity with Bu2 = Bgl* from above. When ByI > ByoF 
all discontinuities with B,z>B,l are evolutionary. 
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Fig.3 Fig.4 

All discontinuities are evolutionary with respect to transverse perturbations, since the 

transverse waves move with velocity a~ = cl/HfB which is represented graphically by the 

angle of inclination of the straight line segment connecting the coordinate origin with the 

point on the curve H,=H,(B,) corresponding to the state behind, or in front of the dis- 

continuity. The necessary condition for the discontinuity to be evolutionary with respect to 

the transverse waves is, that the secant, the inclination of which oorresponds to the velocity 

of propagation of the shock wave, lies on one side of the segments connecting the points of 

inersection of the curve by the secant, with the coordinate origin. Fig.2 shows that this 

condition always holds. 

3. Plane self-similar boundary value problem. Let B,I be the magnitude of the 

magnetic field in the magnetic medium at x = 0, and B,,a denote the magnitude of the magnetic 

field in the region X> 0. We fix the value of B,l and vary B,, and investigate the self- 

similar solutions of the boundary value problem, remembering that a shock wave, a straight 

wave, or their combination, can all pass through the magnetic medium. 
lo. Let O<B,r<B,", and let us consider all possible values of Bvz. (The results are 

shown in Fig.3 where the light points, dark points and asterisks denote, respectively, the 

ordinates B,r, B,z and By** ). 
a) 0 < B,,z < B,,l. In this case we have a discontinuity of the electromagnetic field in 

which the field jumps from the value B,r to the value B,,. 

b) &<&<B,,". The field parameters vary continuously in a simple wave. 

c) B,'< By2 < B,l*. B,z* is determined from the condition (2.2). A discontinuity will 
exist up to the value B,z,*, and after this a simple wave will propagate throughthemagnetic 

medium; here we have a (B,Z*) = v (B,,). 

d) By2 > B,l*. In this case a discontinuity is formed across which the value of the 

field changes from B,, to B,,. 
20. Let B ' <B,& B @‘. We vary the field B,, 

shown in Fig.4 wh:re the no:ation of Fig.3 is used. 

as a parameter, and the results are 

a) By2 < By,*. B,,* is found from the condition (2.2). A discontinuity across which the 

field will jump from BB,l to Bva will propagate through the magnetic medium. 
b) &I* < B,z < B,". In this case the field will vary up to the value BY%* determined by 

the condition a(B,,) = v(B,~) and the jump will move from the point Bvt* to Bvz. 
c) B,"< B,z<B,l. The field parameters vary continuously in a simple wave. 

d) Bvz > B,,1. A shock wave will exist in which the parameters vary in a discontinuous 

manner. 

The self-similar boundary value problem for B,r > BP" is solved as in Sect.2, except 
that in this case the solution 2O, a) will be absent since no point Bvl* exists which satis- 

fies the condition (2.2). 

The author thanks A. G. Kulikovskii and V. V. Golosov for the assessment of the paper. 
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